GCE

Chemistry A

H032/02: Depth in chemistry

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotation	Meaning
A	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Alror carried forward
AW	Or reverse argument
ORA	

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :---: | :---: | :--- | :---: | :---: | :--- |

Questi	ion	Answer	Marks	AO element	Guidance
(c)*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) The candidate gives a clear description of all three tests with correct observations. AND Equations are mostly correct. AND Some fine detail included in answer. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) The candidate describes all three tests with correct observations. OR Describes two tests with a few omissions. AND Includes at least one correct equation. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1-2 marks) The candidate attempts to describe two tests and observations, but explanations are incomplete. OR Gives a thorough description and explanation of one of the tests and attempts one equation. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 1.2 \times 2 \\ & 2.7 \times 2 \\ & 3.4 \times 2 \end{aligned}$	Indicative scientific points Tests for anions Carbonate test: Add $\mathrm{HNO}_{3}(\mathrm{aq}) / \mathrm{HCl}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{H}^{+}(\mathrm{aq})$ fizzing/forms $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow$ Carbonate identified Sulfate test: Add $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \mathrm{OR} \mathrm{BaCl} 2(\mathrm{aq})$ White precipitate \rightarrow Sulfate identified Bromide test Add $\mathrm{AgNO}_{3}(\mathrm{aq})$ Cream precipitate \rightarrow Bromide identified Equations (ionic or full) IGNORE state symbols (even if wrong) Carbonate $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR} 2 \mathrm{H}^{+}+\mathrm{NiCO}_{3} \rightarrow \mathrm{Ni}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{HNO}_{3}+\mathrm{NiCO}_{3} \rightarrow \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $2 \mathrm{HCl}+\mathrm{NiCO}_{3} \rightarrow \mathrm{NiCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NiCO}_{3} \rightarrow \mathrm{NiSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Sulfate $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}$ $\mathrm{OR} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NiSO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ Bromide $\mathrm{OR} \mathrm{BaCl} 2+\mathrm{NiSO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{NiCl}_{2}$ $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{AgBr}$ OR $2 \mathrm{AgNO}_{3}+\mathrm{NiBr}_{2} \rightarrow 2 \mathrm{AgBr}+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ Fine Detail (NOT inclusive) Sequence of tests on samples Carbonate \rightarrow Sulfate \rightarrow Bromide Solubility of AgBr Soluble in concentrated ammonia State symbols in ionic or full equations e, g. $\begin{aligned} & \text { - } \quad 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \mathrm{OR}_{2} 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NiCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \text { - } \quad \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s}) \\ & \text { - } \quad \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{~s}) \end{aligned}$

Question			Answer	Marks	AO element	Guidance
2	(a)		(The enthalpy change) for complete combustion \checkmark of 1 mol (of substance)	2	1.1×2	ALLOW energy change for combustion in excess oxygen OR reacts in excess oxygen OR reacts completely in oxygen OR energy released during complete combustion OR energy change for combustion in excess air IGNORE energy required ALLOW element OR compound OR reactant DO NOT ALLOW atoms
	(b)		FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=\mathbf{- 2 6 8 0}\left(\mathbf{k J ~ m o l}^{-1}\right)$ award 4 marks If answer = (+) $2680\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award $\mathbf{3}$ marks $\begin{array}{r} \begin{array}{r} \text { Energy released in J OR } \mathrm{kJ}=200 \times 4.18 \times 20.0 \\ =16720(\mathrm{~J}) \text { OR } 16.72(\mathrm{~kJ}) \end{array} \\ \begin{array}{r} n\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)=\frac{0.525}{84}=0.00625(\mathrm{~mol}) \checkmark \end{array} \end{array}$ Energy per mole $=\frac{16.72}{0.00625}$ OR $(-) 2675.2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\vee}$ $\Delta \mathrm{cH}=-2680\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Value to 3SF AND ‘-‘sign \checkmark	4	3.1×2 3.2×1 1.2×1	ALLOW 16700 J or 16.7 kJ up to calculator value of 16720 J (Must be at least 3 SF) ALLOW ECF from incorrect $M\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ or energy change IF energy released above rounded to 16700, Energy per mole $=(-) 2672$ by ECF 3 marks $\Delta \mathrm{c} H=-2670$ to 3SF 4 marks COMMON ERROR -7.02 (kJ mol${ }^{-1}$) award 3 marks
	(c)	(i)	$\begin{aligned} & \% \text { uncertainty in temp. rise }=\frac{1}{20} \times 100=5 \% \\ & \% \text { uncertainty in volume }=\frac{2}{200} \times 100=1 \% \end{aligned}$ AND temp rise has greater $\%$ uncertainty \checkmark	2	2.8×2	Award 1 mark if uncertainties are given as 0.05 AND 0.01 with correct statement

Question	Answer	Marks	AO element	Guidance
(ii)	Any two from: Heat released to the surroundings Incomplete combustion OR incomplete reaction OR not everything burns \checkmark Non-standard conditions \checkmark	2	3.2×2	ALLOW heat loss IGNORE reference to evaporation
(iii)	Less accurate due to greater heat losses \checkmark More accurate due to smaller \% uncertainty in temperature change OR mass of fuel burnt \checkmark	2	3.4×2	ALLOW less accurate due to evaporation of water ALLOW error for uncertainty ALLOW for both marks May not change as increase in temperature change OR increase in mass of fuel burned would decrease \% uncertainty BUT may be outweighed by increased heat loss to surroundings OWTTE

Question		Answer	Marks	AO element	Guidance
(b)	(i)	Ca shown with either 8 or 0 electrons AND Br shown with 8 electrons with 7 crosses and 1 dot (or vice versa) Correct charges on both ions \checkmark	2	1.2×1 2.5×1	ALLOW separate Br^{-}ions, i.e. For first mark, if eight electrons are shown around Ca , the 'extra' electrons around Br must match the symbol chosen for the electrons for Na . IGNORE inner shells Circles or brackets not required
	(ii)	Atomic radius Ba has a greater atomic radius than Ca OR Ba has more shells OR Ba has more shielding \checkmark Attraction Nuclear attraction is less in Ba OR (outer) electrons in Ba are less attracted (to nucleus) OR Increased distance / shielding in Ba outweighs increased nuclear charge \checkmark Ionisation energy Ionisation energy of Ba is less OR easier to remove (outer) electrons in Ba \checkmark	3	1.1×1 2.3×2	Comparison required throughout ORA throughout For more shells, ALLOW higher energy level IGNORE more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell' ALLOW Ba has less nuclear pull' OR 'Ba electrons are less tightly held' IGNORE less effective nuclear charge’ IGNORE 'nuclear charge' for 'nuclear attraction' ALLOW easier to oxidise Ba

Question		Answer	Marks	AO element	Guidance
(c)	(i)	$\mathrm{Al}_{2} \mathrm{Se}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{Se}$	1	2.6×1	
	(ii)	$\mathrm{H}_{2} \mathrm{O}$ has hydrogen/H-bonds (between molecules) $\mathrm{H}_{2} \mathrm{Se}$ has induced dipole(-dipole) interactions OR London forces H-bonds are stronger (than other intermolecular forces) OR more energy needed to overcome H -bonds \checkmark	3	$\begin{aligned} & 1.1 \times 2 \\ & 2.1 \times 1 \end{aligned}$	ALLOW permanent dipole-dipole interactions
(d)	(i)	Sodium bromate(V) \checkmark	1	2.5×1	
	(ii)	Br is oxidised AND reduced OR Br oxidation number is increased and decreased \checkmark Br is oxidised from 0 to $+5 \checkmark$ Br is reduced from 0 to $-1 \checkmark$	3	$\begin{aligned} & 1.1 \times 1 \\ & 2.2 \times 2 \end{aligned}$	ALLOW same element is both oxidised and reduced ALLOW 1 mark if all 3 oxidation numbers are correct (even if oxidation/reduction incorrectly assigned)

Question			Answer	Marks	$\begin{array}{\|c} \text { AO } \\ \text { element } \end{array}$	Guidance
4	(a)		Bond angle $112-120^{\circ} \checkmark$ Explanation Around N , there is a double bond, a single bond and a lone pair \checkmark Electron pairs repel Seen anywhere	3	$\begin{aligned} & 1.1 \times 1 \\ & 2.1 \times 2 \end{aligned}$	ALLOW 3 bonding pairs and 1 lone pair OR 2 bonding region and 1 lone pair ALLOW bonding pairs or lone pairs
-	(b)	(i)	$\left(K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl} l_{2}\right]}{[\mathrm{NOC}]^{2}} \downarrow\right.$	1	1.2×1	DO NOT ALLOW curved brackets
		(ii)	From equation, $n(\mathrm{NO})$ is $2 \times n\left(\mathrm{Cl}_{2}\right)$ OR Ratio $\mathrm{NO}: \mathrm{Cl}_{2}$ is $2: 1$	1	3.1×1	Response MUST refer to stoichiometry of equation and compare molar ratio of both NO and Cl_{2}
		(iii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=\sqrt{\mathbf{1 . 3 1}}=1.1\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award 2 marks $\begin{aligned} & {[\mathrm{NOCl}]^{2}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}{K_{\mathrm{c}}} \text { OR } \frac{0.34^{2} \times 0.17}{0.015} \text { OR } 1.3 \checkmark} \\ & {[\mathrm{NOCl}]=\sqrt{1.3}=1.1\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \end{aligned}$	2	2.6×2	ALLOW 1.1 up to calculator value of 1.144552314 ALLOW ECF from inverted K_{c} expression in b(ii) 2.9(478) $\times 10^{-4} 1$ mark 0.017(1691584) 2 marks
		(iv)	As T increases, equilibrium (position) shifts to right AND (forward) reaction is endothermic \checkmark Equilibrium concentration of NO increases \checkmark	2	2.5×2	ALLOW 'favours the right', for 'shifts to right' ALLOW moves to right in endothermic direction

Question		Answer	Marks	AO	Guidance
					 Use curly arrow criteria in guidance above
	(iii)	Nucleophilic substitution \checkmark	1	1.1×1	
(e)		Rate slower with chloroalkane ORA $\mathrm{C}-\mathrm{Cl}$ bond is stronger than $\mathrm{C}-\mathrm{Br}$ bond OR $\mathrm{C}-\mathrm{Cl}$ bond has greater bond enthalpy OR more energy needed to break C -Clbond \checkmark	2	$\begin{aligned} & 3.1 \times 1 \\ & 2.5 \times 1 \end{aligned}$	IGNORE reference to bond polarity

Ques	O	Answer	Marks	AO element	Guidance
(f)		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) The candidate gives thorough explanations of both spectra, and correctly identifies \mathbf{X} and \mathbf{Y} with a correct equation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND Attempts a feasible structure based on deduction from correct M_{r}. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1-2 marks) The candidate gives a simple description based on at least two of the main scientific points. OR Gives a tho rough description and explanation of one of the scientific points. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 2.5 \times 1 \\ & 3.1 \times 2 \\ & 3.2 \times 3 \end{aligned}$	Indicative scientific points LOOK AT THE SPECTRA for labelled peaks Mass Spectrum - M^{+}or molecular ion of 86 - $m / z=43$ shows $\mathrm{CH}_{3} \mathrm{CO}^{+} \mathrm{ORC}_{3} \mathrm{H}_{7}^{+}$ IR Spectrum - IR shows no broad absorption at $2500-3300 \mathrm{~cm}^{-}$ ${ }^{1}$ so no O-H bond AND not a carboxylic acid - IR shows absorption at $1700 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ bond OR indicates a ketone/aldehyde present Identification and Equation - X must be a secondary alcohol, since refluxing a secondary alcohol with acidified potassium dichromate (VI) forms a ketone OR primary alcohol \rightarrow carboxylic acid AND tertiary alcohol would not be oxidised. - \mathbf{X} is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHOHCH}_{3}$ OR compound \mathbf{E} OR 3-methylbutan-2-ol - \mathbf{Y} is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}$ OR 3-methylbutan-2-one Equation $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHOHCH}_{3}+[\mathrm{O}] \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

